SCI 期刊 《Global Change Biology》 (IF: 8.5) 顾问编委,《Remote Sensing》 (IF: 4.5) 编委,核心期刊《遥感技术与应用》编委
研究方向:全球变化生态学和生态遥感。1,综合利用遥感技术,模型和地面观测资料研究自然/城市生态系统关键要素和过程对气候变化和人类活动的响应和反馈。2,生态系统关键参数及其变化的遥感探测。
招生专业:地图学与地理信息系统。欢迎有遥感科学,生态学,自然地理学,物理学或大气科学背景的同学联系推免或报考硕、博士研究生。需要有一定的英语阅读和编程能力。
招聘博士后研究人员1-2位,详见:
http://blog.sciencenet.cn/blog-2438267-1282112.html 或 https://mp.weixin.qq.com/s/Z4BYy7E7gt5MP9skZmpx5Q
在读博士生
2020级 吕金霞;2021级 张立豪
2009年,北京师范大学,资源学院,自然地理学专业,理学博士
2004年,北京师范大学,物理学系,物理学专业,理学学士
2020- 至今, 北京师范大学地理科学学部,陆地表层系统科学与可持续发展研究院,教授
2012-2020年,中国科学院青藏高原研究所,副研究员、研究员
2009-2012年,日本国立环境研究所,博士后
北京师范大学引进人才项目,2021-2026,主持。
中组部万人计划青年拔尖人才项目(第三批),180万元,2018-2020,主持。
中国科学院前沿科学重点研究项目,250万元,2016-2020,主持。
国家自然科学基金面上项目,“青藏高原高寒草地植被生长期对气候变化响应的模拟研究”,91.92万元,2016-2019,主持。
Chiba University Center for Environmental Remote Sensing, CEReS Overseas Joint Research Program 2016, Multi-platform satellite observations for improving retrieval of plant phenology on the Tibetan Plateau,CI16-101, 200,000 Japanese Yen, 2016-2017,主持。
中国科学院青年创新促进会项目,60万元,2015-2018,主持。
国家自然科学基金青年科学基金,“基于控制试验的冰雪区植被物候遥感探测方法研究”,25万元,2013-2015,主持。
国家自然科学基金国际(地区)合作与交流项目,“生态系统多重压力的缓解策略”,200万元,2019-2021,参与。
国家重点研发计划项目,“全球变化驱动下陆表自然和人文要素相互作用及区域表现”,2017-2022,参与。
发表SCI论文70多篇,总引用3000多次 (https://publons.com/researcher/1304528/miaogen-shen/publications/)。第一、通讯作者论文30余篇,篇均被引60多次,其中4篇长期入选ESI前1%高被引论文。论文下载链接(Endnote库,含PDF文件)。第一或通讯作者论文如下:
Shen, M., Tang,Y., Klein, J., Zhang, P., Gu, S., Shimono, A., & Chen, J. (2008). Estimation of above ground biomass using in situ hyperspectral measurements in five major grassland ecosystems on the Tibetan Plateau. Journal of Plant Ecology, 1(4), 247-257. 利用虚拟变量解释不同植被类型间光谱特征--生物量之间关系的差异,构建了利用光谱特征估算生物量的统一模型。
Chen, J., *Shen, M., & Kato, T. (2009). Diurnal and seasonal variations in light-use efficiency in an alpine meadow ecosystem: causes and implications for remote sensing. Journal of Plant Ecology, 2(4), 173-185. 综合考虑散射辐射和直射辐射对光能利用率的不同影响,提出了GPP和APAR之间的线性模型。
Chen, J., *Shen, M., Zhu, X., & Tang, Y. (2009). Indicator of flower status derived from in situ hyperspectral measurement in an alpine meadow on the Tibetan Plateau. Ecological Indicators, 9(4), 818-823. 提出了估算花覆盖估算的高光谱指数。
Shen, M., Chen, J., Zhu, X., & Tang, Y. (2009). Yellow flowers can decrease NDVI and EVI values: evidence from a field experiment in an alpine meadow. Canadian Journal of Remote Sensing, 35(2), 99-106. 自然界实际存在的黄花可降低NDVI和EVI。
Shen, M., Chen, J., Zhu, X., Tang, Y., & Chen, X. (2010). Do flowers affect biomass estimate accuracy from NDVI and EVI? International Journal of Remote Sensing, 31(8),2139-2149. 不同“模拟像元”之间花覆盖度的差异破坏了NDVI/EVI与地上绿色生物量之间的正相关关系。
*Shen, M. (2011). Spring phenology was not consistently related to winter warming on the Tibetan Plateau. Proceedings of the National Academy of Sciences USA, 108(19), E91-E92. 1990年代中后期到2000年代中期返青推迟由春季变冷导致,而非温度。
Shen, M., Tang, Y., Chen, J., Zhu, X., & Zheng, Y. (2011).Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 151(12),1711-1722. 首次分析了降水对高原植被返青的影响,为全球干旱和半干旱的中高纬度春季物候研究提供新的视角。
*Shen, M., Tang, Y., Chen, J., & Yang, W. (2012).Specification of thermal growing season in temperate China from 1960 to 2009. Climatic Change, 114, 783–798. 从遥感数据反演物候,确定了中国温带不同区域热生长季开始和结束期的温度阈值,不同于以往研究对不同区域使用统一阈值。
*Shen, M., Sun, Z., Wang, S., Zhang, G., Kong, W., Chen, A.,& Piao, S. (2013). No evidence of continuously advanced green-up dates inthe Tibetan Plateau over the last decade. Proceedings of the National Academy of Sciences USA, 110(26), E2329. 青藏高原2000年代返青未显著提前。
*Shen, M., Tang, Y., Desai, A. R., Gough, C., & Chen, J.(2014). Can EVI-derived land surface phenology be used as a surrogate for phenology of canopy photosynthesis? International Journal of Remote Sensing, 35(3), 1162-1174. 量化了不同植被类型的结构物候和功能物候之间的差异。
*Shen, M., Tang, Y., Chen, J., Yang, X., Wang, C., Cui, X., . .. Cong, N. (2014). Earlier-Season Vegetation Has Greater Temperature Sensitivity of Spring Phenology in Northern Hemisphere. PLOS ONE, 9(2), e88178. doi:10.1371/journal.pone.0088178. 返青较早的区域/植被类型的返青对温度较为敏感。
Shen, M., Zhang, G., Cong, N., Wang, S., Kong, W., & Piao,S. (2014). Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau. Agricultural and Forest Meteorology, 189–190, 71-80. doi: 10.1016/j.agrformet.2014.01.003. 2000年代青藏高原返青的海拔推迟率增大,与传统物候理论和温度变化的预测相反。
*Han, L., Tsunekawa, A., Tsubo, M., He, C., & *Shen, M.(2014). Spatial variations in snow cover and seasonally frozen ground over northern China and Mongolia, 1988−2010. Global and Planetary Change, 116, 139-148. doi: 10.1016/j.gloplacha.2014.02.008. 融雪期和冻土融化期间隔呈现复杂的时空变化。
Shen, M., Cong, N., & *Cao, R. (2015). Temperature sensitivity as an explanation of the latitudinal pattern of green-up date trend in Northern Hemisphere vegetation during 1982-2008. International Journal of Climatology, 35(12), 3707-3712.doi: 10.1002/joc.4227. 1982-2008年,北半球生长季开始期变化趋势的纬度格局由春季物候对温度的敏感性解释,而非升温幅度。
*Shen, M., Piao, S., Cong, N., Zhang, G., & Jassens, I. A.(2015). Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Global Change Biology, 21(10),3647-3656. doi: 10.1111/gcb.12961. 分析了温度和降水交互作用对返青的影响。
*Shen, M., *Piao, S., Jeong, S. J., Zhou, L., Zeng, Z., Ciais,P., . . . Yao, T. (2015). Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proceedings of theNational Academy of Sciences USA, 112(30), 9299-9304.doi: 10.1073/pnas.1504418112. 在青藏高原,植被覆盖增加导致蒸腾作用增强,可降低日间温度,缓解温度上升趋势,形成植被对气候变化的负反馈。
*Shen, M., Piao, S., Dorji, T., Liu, Q., Cong, N., Chen, X., . .. Zhang, G. (2015). Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. National Science Review, 2(4), 454-467. doi: 10.1093/nsr/nwv058. 梳理了2010-2015年间青藏高原植物/植被物候研究进展,对未来研究提出了建议。
*Chen, J., Rao, Y. H., *Shen, M., Wang, C., Zhou, Y., Ma, L., .. . Yang, X. (2016). A Simple Method for Detecting Phenological Change From Time Series of Vegetation Index. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 54(6), 3436-3449. 提出了一种不需要拟合即可估算物候变化的算法,该算法同时可以有效融合地面观测,误差最小为3天。
*Shen, M., *Piao, S., Chen, X., An, S., Fu, Y. H., Wang, S., . .. Janssens, I. (2016). Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Global Change Biology, 22(9), 3057-3066. 青藏高原植被返青和生长对白天升温响应较弱,主要受夜间温度影响。
Cong, N., *Shen, M., & Piao, S. (2017). Spatial variations in responses of vegetation autumn phenology to climate change on the Tibetan Plateau. Journal of Plant Ecology-UK, 10(5),744–752. 生长季较短的地方,枯黄受返青影响较大,受温度影响较小。
Cong, N., *Shen, M., Piao, S., Chen, X., An, S., Yang, W., . . .Wang, T. (2017). Little change in heat requirement for vegetation green-up onthe Tibetan Plateau over the warming period of 1998-2012. Agricultural and Forest Meteorology, 232(15), 650-658. 1998-2012年,快速升温未降低返青热需求。
Cong, N., *Shen, M., Yang, W., Yang, Z., Zhang, G., & Piao,S. (2017). Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland. International Journal of Biometeorology, 61 (8),1433-1444. doi: 10.1007/s00484-017-1321-5. 青藏高原草地植被生长对温度的响应受降水调节,对降水的响应受温度调节。
Yang, Z., *Shen, M., Jia, S., Guo, L., Yang, W., Wang, C., . . .Chen, J. (2017). Asymmetric responses of the end of growing season to daily maximum and minimum temperatures on the Tibetan Plateau. Journal of Geophysical Research-Atmospheres, 122 (24 ),13278-13287. doi: 10.1002/2017JD027318. 1982-2011年,青藏高原植被枯黄对日夜升温的响应相反,因而未显著推迟。
*Cao, R., *Shen, M., Zhou, J., & Chen, J. (2018). Modeling vegetation green-up dates across the Tibetan Plateau by including both seasonal and daily temperature and precipitation. Agricultural and Forest Meteorology, 249, 176–186. doi: 10.1016/j.agrformet.2017.11.032. 考虑不同时间尺度最高/最低气温和降水影响,有效提高了青藏高原植被生长季开始时间的模拟精度。
An, S., Zhu, X., *Shen, M., *Wang, Y., Cao, R., Chen, X., . . .Tang, Y. (2018). Mismatch in elevational shifts between satellite observed vegetation greenness and temperature isolines during 2000-2016 on the Tibetan Plateau. Global Change Biology, 24(11), 5411-5425. doi: 10.1111/gcb.14432. 青藏高原等绿度线和等温线沿海拔移动速度不一致。
Huang, Y., Jiang, N., *Shen, M., & *Guo, L. (2020). Effect of preseason diurnal temperature range on the start of vegetation growing season in the Northern Hemisphere. Ecological Indicators, 112, 106161. 在北半球约1/4的区域,温度日较差的变化可能影响植被生长季开始时间。
*Shen, M., Jiang, N., Peng, D., Rao, Y., Huang, Y., Fu, Y. H.,. . . *Tang, Y. (2020). Can changes in autumn phenology facilitate earlier green-up date of northern vegetation? Agricultural and Forest Meteorology, 291, 108077. doi: 10.1016/j.agrformet.2020.108077. 在北半球超过1/3的区域,植被生长季开始时间可能受到上一年枯黄时间的影响。
Zhang, L., *Shen, M., *Shi, C., Shi, F., Jiang, N., Yang, Z.,& Ji, Z. (2021). Local Climatic Factors Mediated Impacts of Large-Scale Climate Oscillations on the Growth of Vegetation Across the Tibetan Plateau. Frontiers in Environmental Science, 9(5).doi: 10.3389/fenvs.2021.597971. 植被对气候因子的响应决定了大尺度气候涛动对青藏高原植被生长影响的空间格局。
Yang, Z., Du, Y., *Shen, M., Jiang, N., Liang, E., Zhu, W., . .. Zhao, W. (2021). Phylogenetic conservatism in heat requirement of leaf-out phenology, rather than temperature sensitivity, in Tibetan Plateau. Agricultural and Forest Meteorology,304–305 (2021) 108413. 青藏高原极端的气候环境压力和种系特化的温度需求共同作用下,植物返青始期及其温度敏感性不保守。
Li, Q., *Shen, M., Chen, X., Wang, C., Chen, J., Cao, X., & Cui, X. (2021). Optimal Color Composition Method for Generating High-Quality Daily Photographic Time Series from PhenoCam. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, doi: 10.1109/jstars.2021.3087814. 消除光照变化和不良观测条件影响,构建高质量物候相机影像时间序列。
Fang, B., Yang, Z., *Shen, M., Wu, X., & *Hu, J. (2021). Limited increase in asynchrony between the onset of spring green-up and the arrival of a long-distance migratory bird. Science of The Total Environment, 148823. https://doi.org/10.1016/j.scitotenv.2021.14882332. 家燕从南半球到达中国繁殖地的时间需要和当地植被春季物候匹配,气候变化对此影响有限。
Shen, M., Zhu, X., Peng, D., Jiang, N., Huang, Y., Chen, J., Wang, C. & Zhao, W. (2021) Greater temperature sensitivity of vegetation greenup onset date in areas with weaker temperature seasonality across the Northern Hemisphere. Agricultural and Forest Meteorology, 313, 108759. 在北半球,季节性强的地方,生长季开始期对温度敏感性小。
论文完整目录:https://scholar.google.com/citations?hl=en&user=z3VArYMAAAAJ。
2019年,2018年度西藏自治区科学技术一等奖(排名第四)
2018年,第三批中组部万人计划青年拔尖人才项目
2015年,中国青藏高原研究会第十届青藏高原青年科技奖(个人)
2014年,中国科学院青年创新促进会会员(2019年优秀会员,个人)